Speaker adaptive training applied to continuous mixture density modeling

نویسندگان

  • Xavier L. Aubert
  • Eric Thelen
چکیده

Speaker Adaptive Training (SAT) has been investigated for mixture density estimation and applied to large vocabulary continuous speech recognition. SAT integrates MLLR adaptation in the HMM training and aims at reducing inter-speaker variability to get enhanced speakerindependent models. Starting from BBN's work on compact models, we derive a one-pass Viterbi formulation of SAT that performs joint estimation of MLLR-based transformations and density parameters. The computational complexity is analyzed and an approximation based on using inverse a ne transformations is discussed. Compared to applying MLLR on standard SI models, our experimental results achieve lower error rates as well as reduced decoding costs, for both supervised batch and unsupervised incremental adaptation. In the latter case, it is shown that the enrollment of a new speaker can be sped up by selecting among the transformations that were estimated from the training speakers, the one that best ts with the rst test utterance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAP Estimation of Continuous Density HMM : Theory and Applications

We discuss maximum a posteriori estimation of continuous density hidden Markov models (CDHMM). The classical MLE reestimation algorithms, namely the forward-backward algorithm and the segmental k-means algorithm, are expanded and reestimation formulas are given for HMM with Gaussian mixture observation densities. Because of its adaptive nature, Bayesian learning serves as a unified approach for...

متن کامل

Bayesian Learning of Gaussian Mixture Densities for Hidden Markov Models

An investigation into the use of Bayesian learning of the parameters of a multivariate Gaassian mixture density has been carried out. In a continuous density hidden Markov model (CDHMM) framework, Bayesian learning serves as a unified approach for parameter smoothing, speaker adaptation, speaker clustering, and corrective training. The goal of this study is to enhance model robustness in a CDHM...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Restructuring Gaussian mixture density functions in speaker-independent acoustic models

In continuous speech recognition featuring hidden Markov model (HMM), word N-gram and time-synchronous beam search, a local modeling mismatch in the HMM will often cause the recognition performance to degrade. To cope with this problem, this paper proposes a method of restructuring Gaussian mixture pdfs in a pre-trained speaker-independent HMM based on speech data. In this method, mixture compo...

متن کامل

Speaker independent acoustic modeling using speaker normalization

This paper proposes a novel speaker-independent (SI) modeling for spontaneous speech data from multiple speakers. The SI acoustic model parameters are estimated by individual training for inter-speaker variability and for intraspeaker phonetically related variation in order to obtain a more accurate acoustic model. The linear transformation technique is used for the speaker normalization to ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997